Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
PLoS One ; 18(11): e0293971, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37930992

RESUMO

Djungarian hamsters are small rodents that show pronounced physiological acclimations in response to changes in photoperiod, and unfavorable environmental conditions such as reduced food availability and low external temperature. These include substantial adjustments, such as severe body weight loss and the use of daily torpor. Torpor is a state of decreased physiological activity in eutherms, usually marked by low metabolic rate and a reduced body temperature. In this study, we investigated the effects of photoperiodic acclimation and food deprivation on systemic iron metabolism in Djungarian hamsters. Our study illustrates the association between liver iron levels and the incidence of torpor expression during the course of the experiment. Moreover, we show that both, acclimation to short photoperiods and long-term food restriction, associated with iron sequestration in the liver. This effect was accompanied with hypoferremia and mild reduction in the expression of principal iron-hormone, hepcidin. In addition to iron, the levels of manganese, selenium, and zinc were increased in the liver of hamsters under food restriction. These findings may be important factors for regulating physiological processes in hamsters, since iron and other trace elements are essential for many metabolic and physiological processes.


Assuntos
Hipotermia , Torpor , Cricetinae , Animais , Phodopus/fisiologia , Estações do Ano , Torpor/fisiologia , Fotoperíodo , Jejum
2.
Cells ; 12(10)2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37408188

RESUMO

Temperature changes and periods of detrimental cold occur frequently for many organisms in their natural habitats. Homeothermic animals have evolved metabolic adaptation strategies to increase mitochondrial-based energy expenditure and heat production, largely relying on fat as a fuel source. Alternatively, certain species are able to repress their metabolism during cold periods and enter a state of decreased physiological activity known as torpor. By contrast, poikilotherms, which are unable to maintain their internal temperature, predominantly increase membrane fluidity to diminish cold-related damage from low-temperature stress. However, alterations of molecular pathways and the regulation of lipid-metabolic reprogramming during cold exposure are poorly understood. Here, we review organismal responses that adjust fat metabolism during detrimental cold stress. Cold-related changes in membranes are detected by membrane-bound sensors, which signal to downstream transcriptional effectors, including nuclear hormone receptors of the PPAR (peroxisome proliferator-activated receptor) subfamily. PPARs control lipid metabolic processes, such as fatty acid desaturation, lipid catabolism and mitochondrial-based thermogenesis. Elucidating the underlying molecular mechanisms of cold adaptation may improve beneficial therapeutic cold treatments and could have important implications for medical applications of hypothermia in humans. This includes treatment strategies for hemorrhagic shock, stroke, obesity and cancer.


Assuntos
Adaptação Fisiológica , Temperatura Baixa , Resposta ao Choque Frio , Metabolismo dos Lipídeos , Receptores Ativados por Proliferador de Peroxissomo , Termogênese , Torpor , Torpor/fisiologia , Animais , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Ácidos Graxos/metabolismo , Resposta ao Choque Frio/fisiologia , Fluidez de Membrana , Mitocôndrias/metabolismo
3.
Int J Mol Sci ; 24(13)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37446216

RESUMO

Hypothermia is a promising clinical therapy for acute injuries, including neural damage, but it also faces practical limitations due to the complexities of the equipment and procedures required. This study investigates the use of the A1 adenosine receptor (A1AR) agonist N6-cyclohexyladenosine (CHA) as a more accessible method to induce steady, torpor-like hypothermic states. Additionally, this study investigates the protective potential of CHA against LPS-induced sepsis and neuroinflammation. Our results reveal that CHA can successfully induce a hypothermic state by activating a neuronal circuit similar to the one that induces physiological torpor. This state is characterized by maintaining a steady core body temperature below 28 °C. We further found that this torpor-like state effectively mitigates neuroinflammation and preserves the integrity of the blood-brain barrier during sepsis, thereby limiting the infiltration of inflammatory factors into the central nervous system. Instead of being a direct effect of CHA, this protective effect is attributed to inhibiting pro-inflammatory responses in macrophages and reducing oxidative stress damage in endothelial cells under systemic hypothermia. These results suggest that A1AR agonists such as CHA could potentially be potent neuroprotective agents against neuroinflammation. They also shed light on possible future directions for the application of hypothermia-based therapies in the treatment of sepsis and other neuroinflammatory conditions.


Assuntos
Fármacos Cardiovasculares , Hipotermia , Torpor , Humanos , Hipotermia/induzido quimicamente , Células Endoteliais , Doenças Neuroinflamatórias , Agonistas do Receptor A1 de Adenosina/farmacologia , Agonistas do Receptor Purinérgico P1
4.
Sci Rep ; 13(1): 918, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36650199

RESUMO

Mankind's quest for a manned mission to Mars is placing increased emphasis on the development of innovative radio-protective countermeasures for long-term space travel. Hibernation confers radio-protective effects in hibernating animals, and this has led to the investigation of synthetic torpor to mitigate the deleterious effects of chronic low-dose-rate radiation exposure. Here we describe an induced torpor model we developed using the zebrafish. We explored the effects of radiation exposure on this model with a focus on the liver. Transcriptomic and behavioural analyses were performed. Radiation exposure resulted in transcriptomic perturbations in lipid metabolism and absorption, wound healing, immune response, and fibrogenic pathways. Induced torpor reduced metabolism and increased pro-survival, anti-apoptotic, and DNA repair pathways. Coupled with radiation exposure, induced torpor led to a stress response but also revealed maintenance of DNA repair mechanisms, pro-survival and anti-apoptotic signals. To further characterise our model of induced torpor, the zebrafish model was compared with hepatic transcriptomic data from hibernating grizzly bears (Ursus arctos horribilis) and active controls revealing conserved responses in gene expression associated with anti-apoptotic processes, DNA damage repair, cell survival, proliferation, and antioxidant response. Similarly, the radiation group was compared with space-flown mice revealing shared changes in lipid metabolism.


Assuntos
Hibernação , Exposição à Radiação , Torpor , Animais , Camundongos , Peixe-Zebra/genética , Fígado , Hibernação/fisiologia , Torpor/fisiologia
5.
Sci Rep ; 12(1): 16405, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36180516

RESUMO

Hibernation or torpor is considered a possible tool to protect astronauts from the deleterious effects of space radiation that contains high-energy heavy ions. We induced synthetic torpor in rats by injecting adenosine 5'-monophosphate monohydrate (5'-AMP) i.p. and maintaining in low ambient temperature room (+ 16 °C) for 6 h immediately after total body irradiation (TBI) with accelerated carbon ions (C-ions). The 5'-AMP treatment in combination with low ambient temperature reduced skin temperature and increased survival following 8 Gy C-ion irradiation compared to saline-injected animals. Analysis of the histology of the brain, liver and lungs showed that 5'-AMP treatment following 2 Gy TBI reduced activated microglia, Iba1 positive cells in the brain, apoptotic cells in the liver, and damage to the lungs, suggesting that synthetic torpor spares tissues from energetic ion radiation. The application of 5'-AMP in combination with either hypoxia or low temperature environment for six hours following irradiation of rat retinal pigment epithelial cells delays DNA repair and suppresses the radiation-induced mitotic catastrophe compared to control cells. We conclude that synthetic torpor protects animals from cosmic ray-simulated radiation and the mechanism involves both hypothermia and hypoxia.


Assuntos
Íons Pesados , Hibernação , Torpor , Adenosina/farmacologia , Monofosfato de Adenosina/farmacologia , Animais , Temperatura Corporal , Carbono/farmacologia , Hipóxia , Ratos , Pigmentos da Retina
6.
Int J Mol Sci ; 23(18)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36142152

RESUMO

Hibernators are a natural model of vascular ischemia-reperfusion injury; however, the protective mechanisms involved in dealing with such an injury over the torpor-arousal cycle are unclear. The present study aimed to clarify the changes in the thoracic aorta and serum in summer-active (SA), late-torpor (LT) and interbout-arousal (IBA) Daurian ground squirrels (Spermophilus dauricus). The results show that total antioxidant capacity (TAC) was unchanged, but malondialdehyde (MDA), hydrogen peroxide (H2O2), interleukin-1ß (IL-1ß) and tumor necrosis factor α (TNFα) were significantly increased for the LT group, whereas the levels of superoxide dismutase (SOD) and interleukin-10 (IL-10) were significantly reduced in the LT group as compared with the SA group. Moreover, the levels of MDA and IL-1ß were significantly reduced, whereas SOD and IL-10 were significantly increased in the IBA group as compared with the SA group. In addition, the lumen area of the thoracic aorta and the expression of the smooth muscle cells (SMCs) contractile marker protein 22α (SM22α) were significantly reduced, whereas the protein expression of the synthetic marker proteins osteopontin (OPN), vimentin (VIM) and proliferating cell nuclear antigen (PCNA) were significantly increased in the LT group as compared with the SA group. Furthermore, the smooth muscle layer of the thoracic aorta was significantly thickened, and PCNA protein expression was significantly reduced in the IBA group as compared with the SA group. The contractile marker proteins SM22α and synthetic marker protein VIM underwent significant localization changes in both LT and IBA groups, with localization of the contractile marker protein α-smooth muscle actin (αSMA) changing only in the IBA group as compared with the SA group. In tunica intima, the serum levels of heparin sulfate (HS) and syndecan-1 (Sy-1) in the LT group were significantly reduced, but the serum level of HS in the IBA group increased significantly as compared with the SA group. Protein expression and localization of endothelial nitric oxide synthase (eNOS) was unchanged in the three groups. In summary, the decrease in reactive oxygen species (ROS) and pro-inflammatory factors and increase in SOD and anti-inflammatory factors during the IBA period induced controlled phenotypic switching of thoracic aortic SMCs and restoration of endothelial permeability to resist ischemic and hypoxic injury during torpor of Daurian ground squirrels.


Assuntos
Hibernação , Traumatismo por Reperfusão , Torpor , Actinas/metabolismo , Animais , Antioxidantes/metabolismo , Aorta Torácica , Nível de Alerta , Heparina/metabolismo , Hibernação/fisiologia , Peróxido de Hidrogênio/metabolismo , Interleucina-10/metabolismo , Interleucina-1beta/metabolismo , Malondialdeído/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Osteopontina/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sciuridae/metabolismo , Sulfatos/metabolismo , Superóxido Dismutase/metabolismo , Sindecana-1/metabolismo , Torpor/fisiologia , Fator de Necrose Tumoral alfa/metabolismo , Vimentina/metabolismo
7.
J Comp Physiol B ; 192(2): 349-360, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35001173

RESUMO

The ability to induce a hypothermia resembling that of natural torpor would be greatly beneficial in medical and non-medical fields. At present, two procedures based on central nervous pharmacological manipulation have been shown to be effective in bringing core body temperature well below 30 °C in the rat, a non-hibernator: the first, based on the inhibition of a key relay in the central thermoregulatory pathway, the other, based on the activation of central adenosine A1 receptors. Although the role of mitochondria in the activation and maintenance of torpor has been extensively studied, no data are available for centrally induced hypothermia in non-hibernators. Thus, in the present work the respiration rate of mitochondria in the liver and in the kidney of rats following the aforementioned hypothermia-inducing treatments was studied. Moreover, to have an internal control, the same parameters were assessed in a well-consolidated model, i.e., mice during fasting-induced torpor. Our results show that state 3 respiration rate, which significantly decreased in the liver of mice, was unchanged in rats. An increase of state 4 respiration rate was observed in both species, although it was not statistically significant in rats under central adenosine stimulation. Also, a significant decrease of the respiratory control ratio was detected in both species. Finally, no effects were detected in kidney mitochondria in both species. Overall, in these hypothermic conditions liver mitochondria of rats remained active and apparently ready to be re-activated to produce energy and warm up the cells. These findings can be interpreted as encouraging in view of the finalization of a translational approach to humans.


Assuntos
Hipotermia , Torpor , Animais , Respiração Celular , Camundongos , Mitocôndrias/metabolismo , Ratos , Receptor A1 de Adenosina/fisiologia , Torpor/fisiologia
8.
Neurosci Biobehav Rev ; 128: 218-232, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34144115

RESUMO

In mammals, torpor/hibernation is a state that is characterized by an active reduction in metabolic rate followed by a progressive decrease in body temperature. Torpor was successfully mimicked in non-hibernators by inhibiting the activity of neurons within the brainstem region of the Raphe Pallidus, or by activating the adenosine A1 receptors in the brain. This state, called synthetic torpor, may be exploited for many medical applications, and for space exploration, providing many benefits for biological adaptation to the space environment, among which an enhanced protection from cosmic rays. As regards the use of synthetic torpor in space, to fully evaluate the degree of physiological advantage provided by this state, it is strongly advisable to move from Earth-based experiments to 'in the field' tests, possibly on board the International Space Station.


Assuntos
Hibernação , Voo Espacial , Torpor , Animais , Temperatura Corporal , Humanos , Mamíferos
9.
Endocrinology ; 162(8)2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33939822

RESUMO

Declining and variable levels of estrogens around the time of menopause are associated with a suite of metabolic, vascular, and neuroendocrine changes. The archetypal adverse effects of perimenopause are vasomotor symptoms, which include hot flashes and night sweats. Although vasomotor symptoms are routinely treated with hormone therapy, the risks associated with these treatments encourage us to seek alternative treatment avenues. Understanding the mechanisms underlying the effects of estrogens on temperature regulation is a first step toward identifying novel therapeutic targets. Here we outline findings in rodents that reveal neural and molecular targets of estrogens within brain regions that control distinct components of temperature homeostasis. These insights suggest that estrogens may alter the function of multiple specialized neural circuits to coordinate the suite of changes after menopause. Thus, defining the precise cells and neural circuits that mediate the effects of estrogens on temperature has promise to identify strategies that would selectively counteract hot flashes or other negative side effects without the health risks that accompany systemic hormone therapies.


Assuntos
Regulação da Temperatura Corporal , Encéfalo/fisiologia , Estrogênios/fisiologia , Animais , Fogachos/etiologia , Humanos , Neurônios/metabolismo , Receptores de Estrogênio/metabolismo , Torpor
10.
Cells ; 10(4)2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33920039

RESUMO

The development of the Artemis programme with the goal of returning to the moon is spurring technology advances that will eventually take humans to Mars and herald a new era of interplanetary space travel. However, long-term space travel poses unique challenges including exposure to ionising radiation from galactic cosmic rays and potential solar particle events, exposure to microgravity and specific nutritional challenges arising from earth independent exploration. Ionising radiation is one of the major obstacles facing future space travel as it can generate oxidative stress and directly damage cellular structures such as DNA, in turn causing genomic instability, telomere shortening, extracellular-matrix remodelling and persistent inflammation. In the gastrointestinal tract (GIT) this can lead to leaky gut syndrome, perforations and motility issues, which impact GIT functionality and affect nutritional status. While current countermeasures such as shielding from the spacecraft can attenuate harmful biological effects, they produce harmful secondary particles that contribute to radiation exposure. We hypothesised that induction of a torpor-like state would confer a radioprotective effect given the evidence that hibernation extends survival times in irradiated squirrels compared to active controls. To test this hypothesis, a torpor-like state was induced in zebrafish using melatonin treatment and reduced temperature, and radiation exposure was administered twice over the course of 10 days. The protective effects of induced-torpor were assessed via RNA sequencing and qPCR of mRNA extracted from the GIT. Pathway and network analysis were performed on the transcriptomic data to characterise the genomic signatures in radiation, torpor and torpor + radiation groups. Phenotypic analyses revealed that melatonin and reduced temperature successfully induced a torpor-like state in zebrafish as shown by decreased metabolism and activity levels. Genomic analyses indicated that low dose radiation caused DNA damage and oxidative stress triggering a stress response, including steroidal signalling and changes to metabolism, and cell cycle arrest. Torpor attenuated the stress response through an increase in pro-survival signals, reduced oxidative stress via the oxygen effect and detection and removal of misfolded proteins. This proof-of-concept model provides compelling initial evidence for utilizing an induced torpor-like state as a potential countermeasure for radiation exposure.


Assuntos
Exposição à Radiação , Torpor/fisiologia , Peixe-Zebra/fisiologia , Animais , Ritmo Circadiano/genética , Ritmo Circadiano/efeitos da radiação , Relação Dose-Resposta à Radiação , Degradação Associada com o Retículo Endoplasmático/efeitos da radiação , Regulação da Expressão Gênica/efeitos da radiação , Redes Reguladoras de Genes/efeitos da radiação , Melatonina/farmacologia , Modelos Animais , Fosforilação Oxidativa/efeitos da radiação , Reprodutibilidade dos Testes , Estresse Fisiológico/genética , Estresse Fisiológico/efeitos da radiação , Análise de Sobrevida , Temperatura , Transcriptoma/genética , Transcriptoma/efeitos da radiação , Peixe-Zebra/genética
11.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33372159

RESUMO

Metabolic suppression is a hallmark of animal dormancy that promotes overall energy savings. Some diapausing insects and some mammalian hibernators have regular cyclic patterns of substantial metabolic depression alternating with periodic arousal where metabolic rates increase dramatically. Previous studies, largely in mammalian hibernators, have shown that periodic arousal is driven by an increase in aerobic mitochondrial metabolism and that many molecules related to energy metabolism fluctuate predictably across periodic arousal cycles. However, it is still not clear how these rapid metabolic shifts are regulated. We first found that diapausing flesh fly pupae primarily use anaerobic glycolysis during metabolic depression but engage in aerobic respiration through the tricarboxylic acid cycle during periodic arousal. Diapausing pupae also clear anaerobic by-products and regenerate many metabolic intermediates depleted in metabolic depression during arousal, consistent with patterns in mammalian hibernators. We found that decreased levels of reactive oxygen species (ROS) induced metabolic arousal and elevated ROS extended the duration of metabolic depression. Our data suggest ROS regulates the timing of metabolic arousal by changing the activity of two critical metabolic enzymes, pyruvate dehydrogenase and carnitine palmitoyltransferase I by modulating the levels of hypoxia inducible transcription factor (HIF) and phosphorylation of adenosine 5'-monophosphate-activated protein kinase (AMPK). Our study shows that ROS signaling regulates periodic arousal in our insect diapasue system, suggesting the possible importance ROS for regulating other types of of metabolic cycles in dormancy as well.


Assuntos
Hipóxia/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Torpor/fisiologia , Aminoácidos/metabolismo , Animais , Respiração Celular , Ciclo do Ácido Cítrico , Diapausa/fisiologia , Metabolismo Energético , Glucose/metabolismo , Glicólise/fisiologia , Insetos/metabolismo , Metabolismo dos Lipídeos/fisiologia , Lipídeos/fisiologia , Mitocôndrias/metabolismo , Fosforilação , Sarcofagídeos/metabolismo , Transdução de Sinais
12.
Nat Commun ; 11(1): 6378, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33311503

RESUMO

Homeotherms maintain a stable internal body temperature despite changing environments. During energy deficiency, some species can cease to defend their body temperature and enter a hypothermic and hypometabolic state known as torpor. Recent advances have revealed the medial preoptic area (MPA) as a key site for the regulation of torpor in mice. The MPA is estrogen-sensitive and estrogens also have potent effects on both temperature and metabolism. Here, we demonstrate that estrogen-sensitive neurons in the MPA can coordinate hypothermia and hypometabolism in mice. Selectively activating estrogen-sensitive MPA neurons was sufficient to drive a coordinated depression of metabolic rate and body temperature similar to torpor, as measured by body temperature, physical activity, indirect calorimetry, heart rate, and brain activity. Inducing torpor with a prolonged fast revealed larger and more variable calcium transients from estrogen-sensitive MPA neurons during bouts of hypothermia. Finally, whereas selective ablation of estrogen-sensitive MPA neurons demonstrated that these neurons are required for the full expression of fasting-induced torpor in both female and male mice, their effects on thermoregulation and torpor bout initiation exhibit differences across sex. Together, these findings suggest a role for estrogen-sensitive MPA neurons in directing the thermoregulatory and metabolic responses to energy deficiency.


Assuntos
Temperatura Corporal/fisiologia , Estrogênios/metabolismo , Neurônios/fisiologia , Área Pré-Óptica/metabolismo , Torpor/fisiologia , Animais , Temperatura Corporal/genética , Regulação da Temperatura Corporal/fisiologia , Metabolismo Energético/fisiologia , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Jejum , Feminino , Hipotermia/genética , Hipotermia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
13.
Nature ; 583(7814): 115-121, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32528180

RESUMO

The advent of endothermy, which is achieved through the continuous homeostatic regulation of body temperature and metabolism1,2, is a defining feature of mammalian and avian evolution. However, when challenged by food deprivation or harsh environmental conditions, many mammalian species initiate adaptive energy-conserving survival strategies-including torpor and hibernation-during which their body temperature decreases far below its homeostatic set-point3-5. How homeothermic mammals initiate and regulate these hypothermic states remains largely unknown. Here we show that entry into mouse torpor, a fasting-induced state with a greatly decreased metabolic rate and a body temperature as low as 20 °C6, is regulated by neurons in the medial and lateral preoptic area of the hypothalamus. We show that restimulation of neurons that were activated during a previous bout of torpor is sufficient to initiate the key features of torpor, even in mice that are not calorically restricted. Among these neurons we identify a population of glutamatergic Adcyap1-positive cells, the activity of which accurately determines when mice naturally initiate and exit torpor, and the inhibition of which disrupts the natural process of torpor entry, maintenance and arousal. Taken together, our results reveal a specific neuronal population in the mouse hypothalamus that serves as a core regulator of torpor. This work forms a basis for the future exploration of mechanisms and circuitry that regulate extreme hypothermic and hypometabolic states, and enables genetic access to monitor, initiate, manipulate and study these ancient adaptations of homeotherm biology.


Assuntos
Metabolismo Energético/fisiologia , Hipotálamo/citologia , Vias Neurais/fisiologia , Neurônios/fisiologia , Torpor/fisiologia , Animais , Jejum , Feminino , Privação de Alimentos , Glutamina/metabolismo , Hipotálamo/fisiologia , Masculino , Camundongos , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo
14.
Arch. argent. pediatr ; 118(2): e174-e177, abr. 2020.
Artigo em Inglês, Espanhol | LILACS, BINACIS | ID: biblio-1100429

RESUMO

La linfohistiocitosis hemofagocítica (LHH) puede ser primaria (hereditaria) o secundaria a infecciones, tumores malignos, trastornos reumatológicos, síndromes de inmunodeficiencia y metabolopatías. Se informaron casos de intolerancia a la proteína lisinúrica, deficiencia de múltiples sulfatasas, galactosemia, enfermedad de Gaucher, síndrome de Pearson y galactosialidosis. No se sabe cómo se desencadena la LHH en las metabolopatías. Se diagnosticó LHH en un lactante de 2 meses con letargo, palidez, alimentación deficiente, hepatoesplenomegalia, fiebre y pancitopenia, y se instauró el protocolo HLH-2004. Se realizaron, en conjunto, análisis para detectar mutaciones genéticas y pruebas metabólicas; los resultados fueron negativos para las mutaciones genéticas de LHH primaria, pero se detectaron hiperamoniemia y concentración elevada de metilcitrato. Se diagnosticó acidemia propiónica. Aquí informamos sobre un caso de LHH secundaria a acidemia propiónica. Es posible la realización simultánea de pruebas de detección de trastornos metabólicos y de mutaciones genéticas para el diagnóstico temprano en los lactantes con LHH


Hemophagocytic lymphohystiocytosis (HLH) may be primary (inherited/familial) or secondary to infections, malignancies, rheumatologic disorders, immune deficiency syndromes and metabolic diseases. Cases including lysinuric protein intolerance, multiple sulfatase deficiency, galactosemia, Gaucher disease, Pearson syndrome, and galactosialidosis have previously been reported. It is unclear how the metabolites trigger HLH in metabolic diseases. A 2-month-old infant with lethargy, pallor, poor feeding, hepatosplenomegaly, fever and pancytopenia, was diagnosed with HLH and the HLH-2004 treatment protocol was initiated. Analysis for primary HLH gene mutations and metabolic screening tests were performed together; primary HLH gene mutations were negative, but hyperammonemia and elevated methyl citrate were detected. Propionic acidemia was diagnosed with tandem mass spectrometry in neonatal dried blood spot. We report this case of HLH secondary to propionic acidemia. Both metabolic disorder screening tests and gene mutation analysis may be performed simultaneously especially for early diagnosis in infants presenting with HLH.


Assuntos
Humanos , Masculino , Lactente , Linfo-Histiocitose Hemofagocítica/diagnóstico , Acidemia Propiônica/diagnóstico , Pancitopenia , Esplenomegalia , Linfo-Histiocitose Hemofagocítica/tratamento farmacológico , Acidemia Propiônica/tratamento farmacológico , Torpor , Terapia de Substituição Renal Contínua , Hepatomegalia
15.
J Comp Physiol B ; 190(1): 113-123, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31729534

RESUMO

Whether hibernation accelerates or suppresses autophagy is still unknown. In the current study, we examined changes in autophagy in oxidative soleus (SOL) muscle in summer active (SA), pre-hibernation (PRE), torpor (TOR), interbout arousal (IBA), and post-hibernation groups of Daurian ground squirrels (Spermophilus dauricus). Here, the SOL muscle showed no significant atrophy during hibernation in regard to muscle wet weight, fiber cross-sectional area, or MuRF1 protein level. Autophagy-related proteins beclin1 and Atg7 increased significantly, whereas LC3-II decreased significantly in the PRE group compared with the SA group. However, neither the expression nor activity of cathepsin L showed any differences between the SA and PRE groups. In addition, beclin1, LC3-II, and the LC3-II/LC3-I ratio increased, p62 decreased, LC3 puncta increased, p62 puncta decreased, and cathepsin L activity increased in the TOR group compared with the PRE group. In contrast, beclin1, LC3-II, and the LC3-II/LC3-I ratio decreased, p62 increased, LC3 puncta decreased, p62 puncta increased, and cathepsin L activity declined in the IBA group compared with the TOR group. Moreover, the phosphorylation of Akt (Ser473) and mTOR (Ser2448) changed significantly during hibernation and showed an inverse relationship with autophagy changes. In conclusion, autophagy proteins displayed periodic oscillation in the torpor-arousal cycle, which may be advantageous in maintaining SOL muscle mass during the entire hibernation period. Furthermore, the Akt-mTOR signaling was decreased in TOR and increased in IBA group in the SOL muscle of Daurian ground squirrels during hibernation.


Assuntos
Hibernação/fisiologia , Músculo Esquelético/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sciuridae/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Nível de Alerta/fisiologia , Autofagia/fisiologia , Feminino , Masculino , Estresse Oxidativo/fisiologia , Proteínas Proto-Oncogênicas c-akt/genética , Sciuridae/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Torpor/fisiologia
16.
Physiol Behav ; 215: 112789, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31866231

RESUMO

Numerous studies have reported seasonal variations in regional morphology in the brains of seasonally breeding vertebrates. These alterations of neuronal morphology and dendritic spine density appear to be an active process within specific brain nuclei that regulate seasonal behaviors. In many cases, this neural plasticity has been found to be in response to changes in circulating sex steroid hormone levels and occur within pathways essential for the control of reproductive behaviors. Male red-sided garter snakes (Thamnophis sirtalis parietalis) (RSGS) exhibit a dissociated reproductive pattern where mating is initiated at a time when the gonads and steroidogenesis are inactive. And, although circulating levels of sex steroid hormones are elevated at the initiation of courtship and mating, the only known cue found to initiate courtship behavior and mating, is an extended period of low temperature dormancy (LTD) followed by exposure to warm temperatures. This study was designed to examine the role of seasons, sex steroid hormones, and LTD on neuronal and dendritic spine density within the anterior hypothalamus-preoptic area (AHPOA), a region shown to be critical for the regulation of reproductive behaviors. In the male RSGS, the density of dendritic spines on neurons in the AHPOA was significantly greater in spring, actively courting animals, than summer or fall, non-courting animals. Animals maintained under conditions of LTD exhibited significantly increasing spine density as time maintained in LTD increased. Animals receiving either testosterone or estradiol had a significantly greater density of dendritic spines than control animals. This study offers evidence suggesting that the "set up" of the pathways controlling courtship behavior and mating in the male RSGS, is not due solely to an extended period of LTD, but that an extended period of LTD in conjunction with circulating sex steroid hormones are critical for the initiation of reproductive behavior.


Assuntos
Colubridae/fisiologia , Espinhas Dendríticas/fisiologia , Hormônios Esteroides Gonadais/farmacologia , Plasticidade Neuronal/fisiologia , Prosencéfalo/fisiologia , Estações do Ano , Torpor/fisiologia , Animais , Temperatura Baixa , Corte , Estradiol/metabolismo , Estradiol/farmacologia , Hormônios Esteroides Gonadais/metabolismo , Hipotálamo/metabolismo , Masculino , Área Pré-Óptica/metabolismo , Comportamento Sexual Animal/fisiologia , Testosterona/metabolismo , Testosterona/farmacologia
17.
J Comp Physiol B ; 188(6): 1015-1027, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30121696

RESUMO

The energy budgets of animal species are closely linked to their ecology, and balancing energy expenditure with energy acquisition is key for survival. Changes in animals' environments can be challenging, particularly for bats, which are small endotherms with large uninsulated flight membranes. Heterothermy is a powerful response used to cope with changing environmental conditions. Recent research has revealed that many tropical and subtropical species are heterothermic and display torpor with patterns unlike those of "classical" heterotherms from temperate and arctic regions. However, only a handful of studies investigating torpor in bats in their natural environment exist. Therefore, we investigated whether the Malagasy bat Macronycteris commersoni enters torpor in the driest and least predictable region in Madagascar. We examined the energy balance and thermal biology of M. commersoni in the field by relating metabolic rate (MR) and skin temperature (Tskin) measurements to local environmental characteristics in the dry and rainy seasons. Macronycteris commersoni entered torpor and showed extreme variability in torpor patterns, including surprisingly short torpor bouts, lasting on average 20 min, interrupted by MR peaks. Torpid MR was remarkably low (0.13 ml O2 h-1 g-1), even when Tskin exceeded that of normothermia (41 °C). Macronycteris commersoni is thus physiologically capable of (1) entering torpor at high ambient temperature and Tskin and (2) rapidly alternating between torpid and normothermic MR resulting in very short bouts. This suggests that the scope of hypometabolism amongst heterothermic animals is broader than previously assumed and underlines the importance of further investigation into the torpor continuum.


Assuntos
Quirópteros/fisiologia , Torpor/fisiologia , Animais , Metabolismo Energético , Feminino , Madagáscar , Masculino , Temperatura
18.
Physiology (Bethesda) ; 33(3): 182-196, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29616880

RESUMO

This review compares two states that lower energy expenditure: non-rapid eye movement (NREM) sleep and torpor. Knowledge on mechanisms common to these states, and particularly on the role of adenosine in NREM sleep, may ultimately open the possibility of inducing a synthetic torpor-like state in humans for medical applications and long-term space travel. To achieve this goal, it will be important, in perspective, to extend the study to other hypometabolic states, which, unlike torpor, can also be experienced by humans.


Assuntos
Adenosina/fisiologia , Hibernação/fisiologia , Sono/fisiologia , Torpor/fisiologia , Animais , Humanos
19.
Proc Natl Acad Sci U S A ; 115(4): 810-815, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29311303

RESUMO

Mice subjected to cold or caloric deprivation can reduce body temperature and metabolic rate and enter a state of torpor. Here we show that administration of pyruvate, an energy-rich metabolic intermediate, can induce torpor in mice with diet-induced or genetic obesity. This is associated with marked hypothermia, decreased activity, and decreased metabolic rate. The drop in body temperature correlates with the degree of obesity and is blunted by housing mice at thermoneutrality. Induction of torpor by pyruvate in obese mice relies on adenosine signaling and is accompanied by changes in brain levels of hexose bisphosphate and GABA as detected by mass spectroscopy-based imaging. Pyruvate does not induce torpor in lean mice but results in the activation of brown adipose tissue (BAT) with an increase in the level of uncoupling protein-1 (UCP1). Denervation of BAT in lean mice blocks this increase in UCP1 and allows the pyruvate-induced torpor phenotype. Thus, pyruvate administration induces torpor in obese mice by pathways involving adenosine and GABA signaling and a failure of normal activation of BAT.


Assuntos
Tecido Adiposo Marrom/metabolismo , Obesidade/fisiopatologia , Ácido Pirúvico , Torpor/fisiologia , Proteína Desacopladora 1/metabolismo , Adenosina/metabolismo , Animais , Encéfalo/metabolismo , Resistência à Insulina , Masculino , Camundongos Endogâmicos C57BL , Camundongos Obesos
20.
Brain Behav Immun ; 68: 17-22, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29038037

RESUMO

Hibernators tolerate low metabolism, reduced cerebral blood flow and hypothermia during torpor without noticeable neuronal or synaptic dysfunction upon arousal. Previous studies found extensive changes in brain during torpor, including synaptic rearrangements, documented both morphologically and molecularly. As such adaptations may represent organ damage, we anticipated an inflammatory response in brain during specific hibernation phases. In this study, signs of inflammation in the brain were investigated in the Syrian hamster hippocampus (Mesocricetus Auratus) both during hibernation (torpor and arousal phases) and in summer and winter euthermic animals. mRNA expression of the pro-inflammatory cytokines TNF-α, IL-6 and IL-1ß was quantified by RT-qPCR. Morphological changes of microglia were studied by immunohistochemistry staining for IBA-1. Activation of microglia based on retraction and thickening of the dendritic branches and an increase in cell body size was quantified by calculation of cell body size to total cell size ratio. Expression of pro-inflammatory cytokines was upregulated early in arousal (90 min), and normalized after 8 h of arousal. Substantial loss of microglia ramification was found throughout torpor and early arousal together with a 2-fold increase in the cell body size to total cell size ratio. Notably, microglia changes were fully reversed in late arousal (8 h) to euthermic levels. These results demonstrate an upregulation of inflammatory cytokines and signs of microglia activation during hibernation, which completely resolves by late arousal. Activation of this response may serve to prevent or offset brain damage resulting from the substantial physiological changes accompanying torpor and their rapid change during early arousal.


Assuntos
Hibernação/fisiologia , Mesocricetus/metabolismo , Torpor/fisiologia , Adaptação Fisiológica , Animais , Nível de Alerta/fisiologia , Encéfalo/imunologia , Encéfalo/metabolismo , Cricetinae , Citocinas/metabolismo , Hipocampo/imunologia , Hipocampo/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Mesocricetus/fisiologia , Microglia/patologia , Neuroimunomodulação/fisiologia , Estações do Ano , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA